Closing Wed night: HW_1A, 1B, 1C Check out the first newsletter for homework hints, review sheets and old exam practice.

### 4.9 Antiderivatives

Def' n : If $\mathrm{g}(\mathrm{x})=\mathrm{f}^{\prime}(\mathrm{x})$, then we say
$g(x)=$ "the derivative of $f(x)$ ", and
$f(x)=$ "an antiderivative of $g(x)$ "
Example:
Give an antiderivative of

$$
g(x)=x^{3}+5
$$

## Examples (you do):

Find the general antiderivative of

1. $f(x)=x^{6}-3$
2. $g(x)=\cos (x)+\frac{1}{x}+e^{x}+\frac{1}{1+x^{2}}$
3. $h(x)=\frac{5}{\sqrt{x}}+\sqrt[3]{x^{2}}$
4. $r(x)=\frac{x-3 x^{2}}{x^{3}}$

Initial Conditions: There is no way to know what " C " is unless we are given additional information about the antiderivative. Such information is called an initial condition.

$$
\text { Example: } \begin{aligned}
& f^{\prime}(x)=e^{x}+4 x \text { and } \\
& f(0)=5
\end{aligned}
$$

Find $f(x)$.

Example: $f^{\prime \prime}(x)=15 \sqrt{x}$, and

$$
f(1)=0, f(4)=1
$$

Find $f(x)$.

## Example:

 Ron steps off the 10 meter high dive at his local pool. Find a formula for his height above the water.(Assume his acceleration is a
constant $9.8 \mathrm{~m} / \mathrm{s}^{2}$ downward)

### 5.1 Defining Area

Calculus is based on limiting processes that "approach" the exact answer to a rate question.

In Calculus I, you defined $\mathrm{f}^{\prime}(\mathrm{x})=$ 'slope of the tangent at $x^{\prime}$ $=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

In Calculus II, we will see that antiderivatives are related to the area 'under' a graph

$$
=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

Calc. I Visual:


Calc. II Visual:
$R_{10}=0.3025$

Riemann sums set up:
We are going to build a procedure to get better and better approximations of the area "under" $f(x)$.

1. Break into $n$ equal subintervals.

$$
\Delta x=\frac{b-a}{n} \text { and } x_{i}=a+i \Delta x
$$

## Example:

Approximate the area under $f(x)=x^{3}$ from $x=0$ to $x=1$ using $\mathrm{n}=3$ subdivisions and
right-endpoints to find the height.
2. Draw $n$ rectangles; use function.

Area of each rectangle $=$ (height) $($ width $)=f\left(x_{i}^{*}\right) \Delta x$
3. Add up rectangle areas.

I did this again with 100 subdivisions, then 1000 , then 10000 . Here is the summary of my findings:

| $n$ | $R_{n}$ | $L_{n}$ |
| :--- | :--- | :--- |
| 4 | 0.390625 | 0.140625 |
| 5 | 0.36 | 0.16 |
| 10 | 0.3025 | 0.2025 |
| 100 | 0.255025 | 0.245025 |
| 1000 | 0.25050025 | 0.24950025 |
| 10000 | 0.2499500025 | 0.2500500025 |

Pattern:

$$
\Delta x=\frac{1-0}{n}=\frac{1}{n}, \quad x_{i}=0+i \frac{1}{n}=\frac{i}{n}
$$

Pattern for each Rectangle
Height $=f\left(x_{i}\right)=x_{i}^{3}=\left(\frac{i}{n}\right)^{3}$
Area $=f\left(x_{i}\right) \Delta x=x_{i}^{3} \Delta x=\left(\frac{i}{n}\right)^{3} \frac{1}{n}$

Adding up the area of each rectangle
Sum $=\sum_{i=1}^{n} x_{i}^{3} \Delta x=\sum_{i=1}^{n}\left(\frac{i}{n}\right)^{3} \frac{1}{n}$
Exact Area $=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{i}{n}\right)^{3} \frac{1}{n}$

Definition of the Definite Integral We define the exact area "under" $f(x)$ from $x=a$ to $x=b$ curve to be

$$
\begin{aligned}
\lim _{n \rightarrow \infty} & \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \\
\Delta x & =\frac{b-a}{n} \text { and } \\
x_{i} & =a+i \Delta x
\end{aligned}
$$

$$
\text { where } \quad \Delta x=\frac{b-a}{n} \text { and }
$$

We call this the definite integral of $f(x)$ from $x=a$ to $x=b$, and we write

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

Example: Write down this definition for the function $f(x)=\sqrt{x}$ on the interval $x=5$ to $x=7$.

